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Abstract. In this paper the single two dimensional fast Fourier transform (S-FFT) calculation of Collins’
formula is studied based on Nyquist sampling theorem. The conditions that sampling theorem should follow
are deduced, and the inverse calculation of Collins’ formula is also applied to the reconstruction of light
wave field of object in digital holography. The investigation indicates that inverse calculation of Collins’
formula can be used conveniently in digital holography study on paraxial optical system. The sampling
conditions derived from this paper are helpful to the design of digital holographic optical system.

PACS. 42.40.Lx Diffraction efficiency, resolution, and other hologram characteristics

1 Introduction

It is a widely adopted method to reconstruct the optical
wave field of object plane by using Fresnel diffraction in-
tegral in the application research of digital holography [1].
And the calculation of Fresnel diffraction integral is com-
pleted by using fast Fourier transform (FFT) [2,3]. How-
ever, theoretical analysis has already pointed out that am-
plitude and phase of diffraction field can only be calculated
more accurately when specific conditions are satisfied. For
example, when the light wavelength is λ, the diffraction
distance is d, and the sampling number is N , the specific
condition is that the calculation width of diffraction field
is

√
λdN [2,3]. In actual study, the size of CCD screen is

always fixed and invariable. In order to achieve the accu-
rate reconstruction of amplitude and phase of object light
field, the sampling data of CCD must be done by zero-
filling operation, and a bigger array should be established
to complete calculations when the projection size of the
object measured is larger than the size of CCD screen.
In addition, for larger objects, there is generally a larger
diffraction distance. When d is large, the object light ar-
riving at CCD is usually weak, and the signal noise ratio is
also low. If object light energy can be converged effectively
on the CCD screen through an optical system, the mea-
sured signal-noise ratio can be increased. However, this
will involve the reconstruction when the object light wave
arrives at CCD through an optical system, so it is diffi-
cult to reconstruct object light wave field by using Fresnel
diffraction integral.
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Because of convenient use of Collins’ formula in the
diffraction research on paraxial optical system, in this pa-
per, we will discuss Collins’ formula and S-FFT (single
two dimensional fast Fourier transform) algorithm of its
inverse calculation based on Nyquist sampling theorem.
The study results indicate that the amplitude and phase
of incident plane light wave field can be reconstructed
well with the help of inverse calculation of Collins’ for-
mula under certain circumstances. And the formula can
also be applied conveniently in the digital holography re-
search on paraxial optical system. Examples of wavefront
reconstruction based on our study results will be given.

2 Collins’ formula and its inverse calculation

Supposing the axisymmetrical paraxial optical system can
be described as a matrix of order 2, i.e.

[
A
C

B
D

]
, and the co-

ordinates of incident plane and emergent plane are defined
as x0y0 and xy respectively, Collins established the rela-
tion between the optical wave field on the incidence plane
and the optical wave field on the emergence plane, which
can be described as equation (1) [4]:

U (x, y) =
exp (jkd)

jλB

∞∫

−∞

∞∫

−∞
U0 (x0, y0)

× exp
{

jk

2B

[
A

(
x2

0 + y2
0

)
+ D

(
x2 + y2

)

−2 (xx0 + yy0)]} dx0dy0 (1)

where d is optical length along the axis of ABCD optical
system. k = 2π/λ, and λ is optical wavelength.
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It can be proved theoretically that there is an inverse
calculation expression of Collins’ formula, which is ex-
pressed as equation (2):

U0 (x0, y0) =
exp (−jkd)

−jλB

∞∫

−∞

∞∫

−∞
U (x, y)

× exp
{
− jk

2B

[
D

(
x2 + y2

)
+ A

(
x2

0 + y2
0

)

−2 (x0x + y0y)]} dxdy. (2)

Therefore, equations (1) and (2) comprise the calculation
relation between the optical wave field on the incidence
plane and the optical wave field on the emergence plane
of the axisymmetrical paraxial optical system.

It is not difficult to find that if we define xy-plane as
the CCD detector plane in the digital holography test-
ing, the optical wave field of objective plane U (x0, y0)
can be reconstructed with the help of equation (2) once
U (x, y) can be obtained from the hologram detected by
CCD. Thus, it is very important to study the numeric
calculation method that satisfies the sampling theorem of
equations (1) and (2).

3 The S-FFT calculation of Collins formula

Equation (1) can be expressed by Fourier transform:

U (x, y) =
exp (ikd)

iλB
exp

[
ik

2B
D

(
x2 + y2

)
]

× F

{
U0 (x0, y0) exp

[
ik

2B
A

(
x2

0 + y2
0

)
]}

fx= x
λB ,fy= y

λB

.

(3)

The equation shows that the computation process of
Collins diffraction integral may be regarded as a Fourier
transformation of a product of input signal and quadratic
phase factor, but the result of Fourier transform needs to
be multiplied by another quadratic phase factor.

If the spatial range widths of the optical wave field of
incident plane and that of the optical wave field of emer-
gent plane are respectively. ∆L0 and ∆L in FFT calcula-
tion, and the sampling number is N ×N , according to dis-
crete Fourier transform theory, the frequency range width
is N/∆L0 after discrete transformation. Thus, we get:

∆L

λB
=

N

∆L0
, or ∆L0∆L = λBN. (4)

As ∆L
N = 1

∆L0
λB is the spatial range sampling unit of dis-

crete transformation calculation result, the expression of
equation (3) after sampling operation can be described as:

U

(
p

λB

∆L0
, q

λB

∆L0

)
=

exp (ikd)
iλB

exp
[
iπ

λBD

∆L2
0

(
p2 + q2

)
]

× FFT

{
U0

(
m

∆L0

N
, n

∆L0

N

)
exp

[
iπ

A∆L2
0

λBN2

(
m2 + n2

)
]}

(5)
(p, q, m, n = −N/2,−N/2 + 1, · · · , N/2 − 1).

However, only calculations that satisfy sampling theo-
rem will not cause frequency spectrum superposition, and
more accurate calculation results can be obtained. Anal-
ysis of equation (3) indicates that the transformed func-
tion is the result of object function multiplied by expo-
nent phase factor. The Fourier transformation of exponent
phase factor

exp
[

ik

2B
A

(
x2

0 + y2
0

)
]

is
λB

iA
exp

(
−iλBAπ

(( x

λB

)2

+
( y

λB

)2
))

.

It is a non-band-limited function, which has value in entire
frequency domain. According to frequency domain con-
volution theory, whether object function is a non-band-
limited function or not, the convolution result is always a
non-band-limited function. Therefore, it is impossible to
make the DFT calculation of equation (3) rigidly meet
Nyquist sampling theorem. However, Nyquist sampling
theorem can be described formally that the reciprocal of
spatial sample spacing is larger than or equal to double
times of function’s maximal frequency spectrum. That is
to say, there are at least two sampling points in the space
period corresponding to the maximal frequency spectrum.
In actual diffraction calculation, computations are usually
done to meet sampling theorem approximately based on
the following analysis [2,3].

Generally, the spatial change ratio of object function
corresponding to exponent phase factor is not high. And
the DFT sampling of equation (4) can be approximately
regarded as only related to the sampling of exponent phase
factor. If there are at least two sampling points in a pe-
riod 2π of exponent phase factor in the domain defined
by ∆L0, the DFT calculation will be considered to meet
sampling theorem approximately. The highest spatial fre-
quency points of quadratic phase factor correspond to the
sampling values when both m and n equal ±N/2 in equa-
tions (4). Therefore, when solving the inequation at the
edge of range:

∣
∣
∣
∣
∣

∂

∂m

(
π

A∆L2
0

λBN2

(
m2 + n2

))
∣
∣
∣
∣
m,n=N/2

∣
∣
∣
∣
∣
� π.

We obtain:

|B| � |A|∆L2
0

λN
. (6)

Equations (6) can be regarded as the condition of S-FFT
transform method to obtain diffraction field intensity dis-
tribution. In order to make the computed results meet
sampling theorem, the quadratic phase factor’s sampling
in front of DFT of equations (5) also should meet following
inequation:

∣
∣∣
∣
∣

∂

∂p
π

λBD

∆L2
0

(
p2 + q2

)
∣
∣∣
∣
p,q=N/2

∣
∣∣
∣
∣
� π.

Resolving the above inequality, we obtain:

|B| � ∆L2
0

Nλ |D| . (7)
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According to equations (6) and (7), we will obtain:

|A| � |B|λN

∆L2
0

� 1
|D| . (8)

Equation (8) gives the relationship among each element,
when the S-FFT calculation of Collins’ formula satisfies
Nyquist’s sampling condition approximately. It also indi-
cates that if system parameters meet |A| > 1/|D|, there
will be no solution which meets the sampling request for
both amplitude and phase at the same time.

Now we will discuss spatial range width of the diffrac-
tion field’s when S-FFT calculation is used. According to
∆L0∆L = λBN in equation (4), when the width of in-
put plane ∆L0 of ABCD system is defined, and there are
limited sampling number N , and B is close to zero, the
sampling range width of the calculation ∆L approaches
to zero. On the contrary, the output diffraction field scope
∆L will expand linearly with the increase of B. According
to the fact that when B approaches to zero, the output
plane approaches to the object plane or the image plane,
it will be difficult to calculate the diffraction field of near
field or that of approaching image plane of ABCD system
with S-FFT algorithm.

4 S-FFT calculation of the inverse calculation
expression of Collins’ formula

The inverse calculation expression of Collins’ formula (see
Eq. (2)) can be described by inverse Fourier transform as:

U0 (x0, y0) =
exp (−ikd)

−iλB
exp

[
− ik

2B
A

(
x2

0 + y2
0

)
]

× F−1

{
U (x, y) exp

[
− ik

2B
D

(
x2 + y2

)
]}

fx=
x0
λB ,fy=

y0
λB

.

(9)

It is obvious that the computation process of inverse cal-
culation of Collins’ formula may be regarded as an inverse
Fourier transformation of a product of input plane optical
wave field and quadratic phase factor. But the result of in-
verse transform should be multiplied by another quadratic
phase factor.

Suppose spatial range widths of the incident plane op-
tical wave field and that of the emergent plane optical
wave field are respectively. ∆L0 and ∆L when inverse fast
Fourier transform (IFFT) is used, and the sampling num-
ber is N × N , according to equation (4), we can obtain:

∆L0 =
λ |B|N

∆L
. (10)

As ∆L0
N = λ|B|

∆L is the spatial range sampling unit of IFFT
calculation result, the S-FFT calculation of inverse calcu-

lation of Collins formula can be expressed as equation (11):

U0

(
m

λB

∆L
, n

λB

∆L

)
=

exp (−ikd)
−iλB

exp
[
−iπ

λBA

∆L2

(
m2+n2

)]

× IFFT

{
U

(
p
∆L

N
, q

∆L

N

)
exp

[
−iπ

D∆L2

λBN2

(
p2 + q2

)
]}

(11)

(m, n, p, q = −N/2,−N/2 + 1, · · · , N/2 − 1).

According to the discussion on equation (6), we can obtain
the sampling condition of amplitude about equation (11):

|B| � |D|∆L2

λN
. (12)

According to the discussion on equation (7), we can obtain
the condition of the front phase factor about equation (11)
when it meets sampling theorem approximately:

|B| � ∆L2

Nλ |A| . (13)

In order to make equation (11) meet sampling theorem
approximately, we resolve the equations that are made up
of equations (6) and (7), and then we will obtain:

|D| � |B|λN

∆L2
� 1

|A| . (14)

It is obvious that if system parameters meet |A| > 1/|D|,
then there will be no resolution which meets the sampling
request for both amplitude and phase at the same time.

At last we will consider the problem of how to obtain
the spatial range width of incident plane diffraction field
of ABCD system with using inverse calculation of S-FFT.
According to equation (12), when the output plane width
∆L of ABCD system is defined, the inequation can only
be satisfied when the sampling number N is very large
if B approaches to zero. According to the fact that if B
approaches to zero, the output plane approaches to the
incidence plane or the image plane, S-FFT algorithm can
not resolve the diffraction’s inverse calculation question in
the near field or the near image plane.

5 Application of Collins formula’s inverse
calculation in wavefront reconstruction

If CCD screen is regarded as an output plane after object
light goes through an ABCD system, then the objective
optical wave field can be reconstructed by using inverse
calculation of Collins’ formula. And then it will become
a specific example based on the wavefront reconstruction
of inverse calculation of Fresnel diffraction integral when
A = 1, B = d, C = 0, D = 1.

To certify the accuracy of theoretical results mentioned
above, we have done experiment with YAG laser of wave-
length 532 nm. Figure 1 is the illustration of the ex-
periment. In Figure 1, the plane wave propagates along
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d f f ds   d2

Fig. 1. Illustration of the experiment.

z-axis forward. This beam first illuminates a diaphragm
and forms the optical wave field of incidence plane. The
diaphragm is a transparent hole carved with a Chinese
word “ ” (which means dragon) with the width 10 mm.
Then the beam reaches the lens L1 with focal length
f = 680 mm after passing through a diffraction distance
d0. After that it reaches the lens L2 with focal length
f = 150 mm after passing through distance d1. It then
enters a beam splitter S, whose width is ds and the refrac-
tive index is n = 1.5. The beam finally reaches CCD screen
after passing through another distance d2. In the experi-
ment, d1 = f1 + f2, and a plane beam is introduced above
S as reference beam. The size of CCD is 3.3 mm×3.3 mm,
and pixels are 1024 × 1024.

The diaphragm plane and CCD plane are regarded as
the incident plane and emergent plane of ABCD system
respectively, so the elements of matrix of ABCD system
can be described by the following equation:
[

A B
C D

]
=

[
1 d
0 1

] [
1 ds/n
0 1

] [
1 0

−1/f2 1

]

×
[

1 f1 + f2

0 1

] [
1 0

−1/f1 1

] [
1 d0

0 1

]

=
[−f2/f1 f1 + f2 − (ds/n + d) f1/f2 − d0f2/f1

0 −f1/f2

]
.

(15)

As equation |A| = 1/|D| is satisfied, when inequation (14)
take an equal mark, we can obtain:

∆L2 = |ABλN | . (16)

That is to say, when ∆L =
√|ABλN | is selected, the op-

tical wave field on the incidence plane obtained by inverse
calculation meets sampling theorem approximately. When
the width of CCD window ∆L =

√|ABλN | = 3.3 mm,
then we have:

B =
3.3 × 3.3

|150/680× 0.000532× 1024| ≈ 90.6 (mm).

The width of the reconstructed object plane can be ob-
tained by equation (10):

∆L0 =
λ |B|N

∆L
=

0.000532× 90.5 × 1024
3.3

≈ 15 mm.

It is obvious that the reconstructed object plane which is
obtained by using above parameters can completely con-
tain original object plane’s diaphragm. In addition, ac-
cording to equation (15), the optical system parameters

(a) Gray level distribution of the

subtracted image (1024 × 1024)

(b) Frequency spectrum intensity of the

subtracted image (512 × 512)

Fig. 2. Gray level distribution and the frequency spectrum in-
tensity of the subtracted image which detected by CCD before
and after introducing a phase-shift.

A, C and D are only related to the focal length of lens,
and parameter B is determined by the following equation:

B = f1 + f2 − (ds/n + d2) f1/f2 − d0f2/f1. (17)

Therefore, when ds, n, f1, f2 are already defined, we can
obtain the same system parameters A, B, C and D when
different d2, d0 are selected. And it provides a proof to
the proper selection for the location of object and CCD
according to the experimental conditions. For example,
supposing d0 = 260 mm, we can obtain d2 ≈ 97 mm. The
above results are certified by following experiment.

In the experimental research, a phase-shift (non inte-
gral multiples of 2π) is introduced in the reference light
to eliminate the influence of zero-order diffraction light ef-
fectively. And then the frequency spectrum of object light
is obtained by doing discrete Fourier transform on the
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(a) Diffraction image obtained by

calculation (3.3 mm×3.3 mm) inverse

(b) Diffraction image detected by

CCD (3.3 mm×3.3 mm)

Fig. 3. Comparison between the diffraction image obtained by
inverse calculation on object light frequency spectrum and the
actual measured image.

difference image. The difference image is obtained by sub-
tracting one intensity interference pattern from the other
with phase-shifting of reference wave [6]. The gray level
distribution and the frequency spectrum intensity of the
subtracted image are shown as Figures 2a and 2b (passing
region of the filter is shown with tint ring in Fig. 2b).

Shifting the frequency spectrum of object light ob-
tained in Figure 2b to the center of frequency plane, and
then using zero-filling operation to form a new object
light frequency spectrum, the sampling points of which
are 1024 × 1024, we can get the object light diffraction
image obtained by doing inverse Fourier transform on the
frequency spectrum as shown in Figure 3a. And the im-
age used in the experiment to cover the reference light is
recorded by CCD and is shown in Figure 3b. Obviously,
theoretical calculation agrees well with experimental mea-
surement.

(a) Reconstructed object plane by inverse

calculation (15 mm × 15 mm)

(b) Actual object plane (15 mm × 15 mm)

Fig. 4. Comparison between Collins formula and S-FFT calcu-
lation of its inverse calculation and experiment measurement.

The optical wave field data which correspond to Fig-
ure 3a are applied to inverse calculation equation (11).
The normalized intensity distribution of the optical wave
field on the object plane (0∼255) is shown as Figure 4a.
Figure 4b is a diaphragm’s projective image. It is obvi-
ous that there is no difference between the theoretically
reconstructed image and the actual image virtually. But
the light intensity which inner the transparent hole of the
reconstructed image is uneven, and the border is relatively
diffused. The main reason of the uneven light intensity is
that the illuminating light is not uniform and there is a
failure to sufficiently filter zero-order diffraction light and
frequency spectrum of conjugate light in the frequency
spectrum plane (Fig. 2b). But the diffuse boundary is
due to the loss of high frequency when object frequency
spectrum is obtained from Figure 2b. If the uniform de-
gree of the illuminate light is improved, and three-time
phase-shift (π/2, π, 3π/2) is introduced in the reference
light [1,5], a better reconstructed quality of the optical
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wave field on the plane of object can be obtained from
object light frequency spectrum, which is from four inter-
ference images before and after introducing a phase-shift.
However, the experiment has already given a certification
to the discussion in this paper.

Certainly, the comparison mentioned above just pro-
vides a feasibility for the reconstruction of amplitude.
Actually, phase reconstruction of inverse calculation is
fairly precise. Calculation results indicate that the maxi-
mal change of phase is less than 10−12 radian in the trans-
parent hole, so it can be regarded as a plane wave. There-
fore, according to the calculated conditions derived from
this paper, the inverse calculation equation (11) can re-
construct the incidence plane optical wave field accurately.
And it is completely feasible to use S-FFT algorithm of in-
verse calculation of Collins’ formula in digital holography.

6 Conclusions

In short, Collins’ formula and S-FFT algorithm of its
inverse calculation are studied in this paper. On the basis
of sampling theorem, the condition equations that are used

to calculate amplitude and phase of optical wave fields
are deduced. Moreover, an application research example of
digital holography based on the studied results is given.
And it provides a useful reference for the calculation of
Collins’ formula and the study of digital holography.

This work was supported by Nation Natural Science Founda-
tion of China (60178004) and the Natural Science Foundation
of Yunnan Province (2004F0025M).
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